## Best Machine Learning Courses 2020

## Best Machine Learning tutorials 2020

### Machine Learning A-Z: Hands-On Python & R In Data Science

Machine Learning A-Z: Hands-On Python & R In Data Science by Kirill Eremenko, Hadelin de Ponteves and SuperDataScience Team will teach you Machine Learning using Python & R. This course has been designed by two professional Data Scientists. With over 300,000 students and an average rating of 4.5 on Udemy, this is quite simply one of the best Machine Learning & Python courses. If that wasn’t enough, this course has a length of over 40 hours of video content! This makes it one of the most comprehensive Machine Learning courses ever.

The Machine Learning Python course is structured in the following way:

- Part 1 – Data Preprocessing
- Part 2 – Regression: Simple Linear Regression, Multiple Linear Regression, Polynomial Regression, SVR, Decision Tree Regression, Random Forest Regression
- Part 3 – Classification: Logistic Regression, K-NN, SVM, Kernel SVM, Naive Bayes, Decision Tree Classification, Random Forest Classification
- Part 4 – Clustering: K-Means, Hierarchical Clustering
- Part 5 – Association Rule Learning: Apriori, Eclat
- Part 6 – Reinforcement Learning: Upper Confidence Bound, Thompson Sampling
- Part 7 – Natural Language Processing: Bag-of-words model and algorithms for NLP
- Part 8 – Deep Learning: Artificial Neural Networks, Convolutional Neural Networks
- Part 9 – Dimensionality Reduction: PCA, LDA, Kernel PCA
- Part 10 – Model Selection & Boosting: k-fold Cross Validation, Parameter Tuning, Grid Search, XGBoost

This Python tutorial will teach you everything related to Machine Learning, step-by-step. You will build an army of powerful Machine Learning models. Then you will combine them to solve any problem. You will be able to handle different topics like Reinforcement Learning, NLP and Deep Learning. Advanced techniques like Dimensionality Reduction are also taught.Using the knowledge you gain, you will know which **Machine Learning model** to use depending on the problem. **Learn Machine Learning** from the **best Machine Learning tutorial** in 2020.

You will learn:

Master machine learning on Python and R

Have a great intuition of many machine learning models

Make accurate predictions

Do a powerful analysis

Build robust machine learning models

Create high added value for your business

Use machine learning for personal gain

Cover specific topics such as reinforcement learning, NLP, and deep learning

Manage advanced techniques such as dimensionality reduction

Know which machine learning model to choose for each type of problem

Build an army of powerful machine learning models and know how to combine them to solve any problem

### Python for Data Science and Machine Learning Bootcamp

How to use Python for Data Science and Machine Learning. You will use different Python frameworks and libraries such as NumPy, Pandas, Seaborn, Matplotlib, Scikit-Learn, Tensorflow and more. This Python tutorial will show you how to use Python to implement Machine Learning algorithms. You will use SciKit-Learn for Machine Learning. This tutorial will show you how use Matplotlib and Seaborn for data visualizations. Use Spark for Big Data analysis. You will understand what Natural Language Processing is along with Spam Filters. K Nearest Neighbors and K Means Clustering are discussed. You will learn all about Neural Networks. This Python data Science training will teach you how to support Vector Machines. Decision Trees and Random Forests are both explained. This is one of the best Data Science Python courses in 2020.

This comprehensive course will be your guide to learning how to use the power of Python to analyze data, create beautiful visualizations, and use powerful machine learning algorithms! Data Scientist has been ranked number one on Glassdoor and the average salary for a data scientist exceeds $ 120,000 in the United States according to Indeed! Data Science is a rewarding career that allows you to solve some of the world’s most interesting problems! This course is designed for beginners with some programming experience or for seasoned developers looking to take the leap into data science! This comprehensive course is comparable to other Data Science bootcamps which typically cost thousands of dollars, but now you can learn all of this information at a fraction of the cost! With over 100 HD video lectures and detailed code notebooks for each lecture, this is one of the most comprehensive data science and machine learning courses on Udemy!

You will learn

Use Python for data science and machine learning

Use Spark for Big Data Analysis

Implement machine learning algorithms

Learn how to use NumPy for numeric data

Learn how to use Pandas for data analysis

Learn how to use Matplotlib for Python plotting

Learn how to use Seaborn for statistical graphs

Use Plotly for interactive dynamic visualizations

Using SciKit-Learn for Machine Learning Tasks

K-Means clustering

Logistic regression

Linear regression

Random forest and decision trees

Natural language processing and spam filters

Neural networks

Support vector machines

### Data Science and Machine Learning Bootcamp with R

How to use the R programming language for data science, machine learning, and data visualization. This R programming language tutorial is a comprehensive course that is almost 18 hours in length. It covers everything R programming related. You will learn how to use R to handle csv, excel, SQL files or web scraping. This R programming course will teach you how to use R for Data Science and Data Analysis. This R video course will teach you Machine Learning. Some of the Machine Learning topics you will learn include Linear Regression, K Nearest Neighbors, K Means Clustering, Decision Trees, Random Forests, etc. **Learn Machine Learning** from the **best Machine Learning course** in 2020.

This course will teach you how to program with R, create amazing data visualizations, and use machine learning with R! Here are some of the topics we’ll learn:

Programming with R

Advanced R features

Using R data frames to solve complex tasks

Use R to manage Excel files

Web scraping with R

Connect R to SQL

Use ggplot2 for data visualizations

Use plot for interactive visualizations

Machine learning with R, including:

Linear regression

K Nearest neighbors

K means grouping

Decision trees

Random forests

Twitter data mining

Neural networks and deep learning

Support Vectore machines

### Introduction to Machine Learning for Data Science

In this introductory course, the “Backyard Data Scientist” will guide you through the wilderness of Machine Learning for Data Science. Accessible to all, this introductory course explains not only Machine Learning, but also where it fits in the “tech sphere around us”, why it is important now and how it will radically change our world today and for them. days to come.

Our exotic journey will include the fundamental concepts of:

The definition of computer train wreck and the one that will make sense.

A data explanation that will make you see data everywhere you look!

One of the “biggest lies” ever sold about future computing.

A real explanation of Big Data, and how to avoid falling into the hype.

What is artificial intelligence? Can a computer really think? How do computers do things like navigate like a GPS or play games anyway?

What is machine learning? What if a computer can think – can it learn?

What is data science and how it relates to magical unicorns!

How IT, Artificial Intelligence, Machine Learning, Big Data, and Data Science interact.

To make sense of the Machine part of Machine Learning, we’ll explore the Machine Learning process:

How do you solve machine learning issues and what are the five things you need to do to be successful?

How to ask the right question, to be solved by Machine Learning.

Identify, obtain and prepare the right data… and manage the dirty data!

How each mess is “unique” but ordered data is like families!

How to identify and apply machine learning algorithms, with exotic names such as “Decision Trees”, “Neural Networks”, “K’s Closest Neighbors” and “Naive Bayesian Classifiers”

And the biggest pitfalls to avoid and how to tune your machine learning models to ensure a successful outcome for data science.

You will learn:

Really understand what computing, algorithms, programming, data, big data, artificial intelligence, machine learning and data science are.

Understand how these different areas fit together, how they are different and how to avoid marketing fluff.

The impacts of machine learning and data science on society.

To truly understand computer technology has changed the world, with an appreciation of scale.

Find out what problems machine learning can solve and how the machine learning process works.

How to avoid problems with Machine Learning, to implement it successfully without losing your mind!

## Best Machine Learning books 2020

### Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems

- Géron, Aurélien (Author)
- English (Publication Language)
- 856 Pages - 10/15/2019 (Publication Date) - O'Reilly Media (Publisher)

Through a series of recent breakthroughs, deep learning has stimulated the whole field of machine learning. Now, even programmers who know almost nothing about this technology can use simple and effective tools to implement programs that can learn from data. This practical book shows you how.

Using concrete examples, a minimal theory, and two production-ready Python frameworks – Psychite-Learn and TenserFlow – author Orlean Geron helps you gain an intuitive knowledge of the concepts and tools of creating intelligent systems. You will learn a variety of techniques, including general linear regression and advances in deep neural networks. A programming experience is just what you need to get started with the practice in each chapter to help you apply what you have learned.

Explore machine learning landscapes, especially neural networks

Use Psychit-Learn to follow the example of the end-to-end machine learning project

Look for several training models including support vector machines, decision trees, random forests and aggregation methods

Use the TensorFlow Library to create and train neural networks

Immerse yourself in neural network architectures, including convincing networks, repeat networks, and deep reinforcement learning.

Learn deep neural networks training and scaling techniques

### Building Machine Learning Powered Applications: Going from Idea to Product

- Ameisen, Emmanuel (Author)
- English (Publication Language)
- 260 Pages - 02/04/2020 (Publication Date) - O'Reilly Media (Publisher)

Learn the skills to design, build, and deploy applications based on machine learning (ML). During this practical manual, you will create an example of an application controlled by ML from the initial concept to the deployed product. Data scientists, software engineers and product managers, including experienced scientists and beginners, will learn step-by-step the tools, best practices and challenges involved in creating real ML applications.

Author Emanuel Ameisen, an experienced information scientist who has led an AI training program, is presenting practical ML ideas using code snippets, images, screenshots and interviews with industry leaders. Part I taught you how to plan ML applications and measure success. The second part explains how to create a functional ML model. The third part shows how the model can be improved until it meets your original vision. The fourth section covers deployment and monitoring techniques. You are about to learn:

Set your product goals and set up a machine learning problem

Quickly build the last pipeline from your first end and acquire an initial data set

Train and evaluate your ML models and address performance barriers

Place and monitor your model in a manufacturing environment

### Introduction to Machine Learning with Python: A Guide for Data Scientists

- Müller, Andreas C. (Author)
- English (Publication Language)
- 400 Pages - 10/25/2016 (Publication Date) - O'Reilly Media (Publisher)

Machine learning has become an integral part of many commercial applications and research projects, but the region is not exclusive to large companies with large research teams. If you use Python, even as a beginner, this book will teach you practical ways to create your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.

Learn the steps needed to build a successful machine learning application, including Python and the Psychite-Learn Library. Authors Andreas Mueller and Sarah Guido focus on the practicality of using machine learning algorithms rather than the math behind them. Getting acquainted (gain, obtain) with present-day libraries will help you to get the most out of this book. You will learn:

Basic concepts and applications of machine learning

Advantages and disadvantages of widely used machine learning algorithms

What aspects of data should be focused on, including how to present data processed by machine learning?

Advanced methods for model evaluation and parameter adjustment

The concept of pipelines in chain models and equipping your workflow

Methods of working with text data, including text-specific processing techniques

Advice for improving your machine learning and data science skills

### Machine Learning For Absolute Beginners: A Plain English Introduction

- Theobald, Oliver (Author)
- English (Publication Language)
- 156 Pages - 01/01/2018 (Publication Date) - Independently published (Publisher)

The second edition of Machine Learning for Absolute Beginners was created and designed for the perfect beginner. This means explanation in simple English and no coding experience required. When the basic algorithm is introduced, clear explanations and visual examples are added to make the house clear to follow and interesting.

This new edition introduces a number of issues, including cross-validation, data cleansing, and overall modeling. Please note that this book is not a continuation of the first edition, but a revised and revised version of the first edition. Readers of the first edition should not feel pressured to buy this second edition. In this step-by-step guide, you will learn:

– How to download free datasets

– The machine learning tools and library you need

– Data cleanup strategies including hot encoding, integration and missing data processing

– Prepare data for analysis with K-fold validity

– Regression analysis to create trend lines

– Clustering with K-average and nearest K-neighbor

– The basics of neural networks

– Bias / variant to improve your machine learning model

– Decide to decode the tree

– How to create your first machine learning model to predict room quality using Python

### Mastering Machine Learning Algorithms: Expert techniques for implementing popular machine learning algorithms, fine-tuning your models, and understanding how they work, 2nd Edition

- Bonaccorso, Giuseppe (Author)
- English (Publication Language)
- 798 Pages - 01/31/2020 (Publication Date) - Packt Publishing (Publisher)

Updated and revised the second edition of the best-selling guide to explore and master the most important algorithms for solving complex machine learning problems. Updated to include new algorithms and techniques. The code has been updated to Python 3.8 and TensorFlow 2.x new coverage of regression analysis, time series analysis, deep learning models and advanced applications.

The second version, the Mastering Machine Learning Algorithm, helps you use the true power of machine learning algorithms to implement clever ways to meet today’s irresistible data needs. This recently updated and revised guide will help you master the algorithms widely used in semi-supervised learning, empowerment learning, supervised learning and observational learning.

You will use all the modern libraries of the Python ecosystem, including Numpy and Keras, to extract functionality from various data complexities. Dyeing from the Bayesian models to the hidden Markov models from the Monte Carlo Markov chain algorithm, this machine learning book teaches you how to extract entities from your dataset, reduce complex dimensions, and create models. Supervise and semi-supervise using Python based models from libraries such as Psychit-Learn. You will learn complex techniques such as the highest probability estimates, Hibbian learning and the formation of efficient neural networks for complete learning. You will also discover practical applications for how to use X. .

Towards the end of this book, you will be able to apply end-to-end machine learning problems and use ready-to-solve and case scenarios. You will learn:

Understand the features of a machine learning algorithm

Apply algorithms from supervised, semi-supervised, monitored and RL domains

Learn how regression works in time series analysis and risk forecasting

Create, model and train complex potential models

Collect big data and evaluate the accuracy of the model

Discover how artificial neural networks work – train, adapt and validate them

Work with automatic encoders, Hebrew networks and GNS

This book is for data science professionals who want to explore complex ML algorithms to understand how to create different machine learning models. Knowledge of Python programming is required.